JCRT.ORG
 ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE
RESEARCH THOUGHTS (IJCRT)
An International Dpen Access, Peer-reviewed, Refereed Journal

On The Surd Equation

$$
\sqrt{2 z}=\sqrt{x+i y}+\sqrt{x-i y}
$$

K.Meena ${ }^{\mathbf{1}}$, S.Vidhyalakshmi ${ }^{2}$, M.A. Gopalan ${ }^{3}$
${ }^{1}$ Former YC, Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
${ }^{2}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,Trichy-620 002,Tamil Nadu, India.
${ }^{3}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,

Trichy-620 002,Tamil Nadu, India.

Abstract

: In this short paper, non-zero integer distinct integer solutions to the surd equation with three unknowns given by $\sqrt{2 z}=\sqrt{x+i y}+\sqrt{x-i y}$ are obtained through the integer solutions of Pythagorean equation.

Keywords: surd equation, transcendental equation ,integer solutions

\section*{Introduction:}

Diophantine equations have an unlimited field of research by reason of their variety. Most of the Diophantine problems solved by the researchers are algebraic equations [1,2].

It seems that much work has not been done in finding the integer solutions to transcendental equations involving surds. In this context ,refer [3-18] to the integral solutions of transcendental equations involving surds .This short communication analyses a transcendental equation with three unknowns given by $\sqrt{2 z}=\sqrt{x+i y}+\sqrt{x-i y}$. Infinitely many non-zero integer triples (x, y, z) satisfying the above equation are obtained through employing the integer solutions to the well-known Pythagorean equation.

Method of analysis:

The surd equation to be solved is

$$
\begin{equation*}
\sqrt{2 z}=\sqrt{x+i y}+\sqrt{x-i y} \tag{1}
\end{equation*}
$$

On squaring both sides of (1) ,it simplifies to

$$
\begin{equation*}
\mathrm{z}=\mathrm{x}+\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}} \tag{2}
\end{equation*}
$$

the square-root on the R.H.S. of (2) ,take

$$
\begin{equation*}
x^{2}+y^{2}=\alpha^{2} \tag{3}
\end{equation*}
$$

which is nothing but the well-known Pythagorean equation satisfied by

$$
\begin{equation*}
x=r^{2}-s^{2}, y=2 r s, r \geq s \geq 0 \tag{4}
\end{equation*}
$$

and

$$
\alpha=r^{2}+s^{2}
$$

In view of (2),it is seen that

$$
\mathrm{z}=2 \mathrm{r}^{2}
$$

Thus,(4) and (5) represent the integer solutions to (1).
A few numerical solutions are presented in Table: 1 below
Table:1 Numerical solutions

| r | s | x | y | z | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 3 | 4 | 8 | |
| 3 | 2 | 5 | 12 | 18 | |
| 4 | 2 | 12 | 16 | 32 | |
| 5 | 3 | 16 | 30 | 50 | |

It is worth mentioning that , (3) is also satisfied by

$$
\begin{equation*}
x=2 r s, y=r^{2}-s^{2}, r \geq s \geq 0 \tag{6}
\end{equation*}
$$

and

$$
\alpha=\mathrm{r}^{2}+\mathrm{s}^{2}
$$

From (2) ,the value of z is given by

$$
\begin{equation*}
\mathrm{z}=(\mathrm{r}+\mathrm{s})^{2} \tag{7}
\end{equation*}
$$

Thus, (6) and (7) satisfy (1).

A few numerical solutions are presented in Table:2 below
Table:2 Numerical solutions

r	s	x	y	z
2	1	4	3	9
3	2	12	5	25
4	2	16	12	36
5	3	30	16	64

Further, (3) is also satisfied by

$$
\begin{align*}
& x=\left(r^{2}+s^{2}\right)\left[\left(A^{2}-B^{2}\right)\left(r^{2}-s^{2}\right)-4 r s A B\right] \\
& \left.y=\left(r^{2}+s^{2}\right)\left[\left(A^{2}-B^{2}\right) 2 r s+2 A B\left(r^{2}-s^{2}\right)\right]\right) \tag{8}
\end{align*}
$$

and

$$
\alpha=\left(\mathrm{r}^{2}+\mathrm{s}^{2}\right)^{2}\left(\mathrm{~A}^{2}+\mathrm{B}^{2}\right)
$$

From (2), the value of z is given by

$$
\begin{equation*}
\mathrm{z}=2\left(\mathrm{r}^{2}+\mathrm{s}^{2}\right)(\mathrm{Ar}-\mathrm{B} s)^{2} \tag{9}
\end{equation*}
$$

Thus, (8) and (9) satisfy (1). It should be remembered that the values of r, s, A and B are chosen so that x and y are non-zero positive integers as they represent the legs of pythagorean triangle.

A few numerical solutions are presented in Table: 3 below
Table:3 Numerical solutions

A	B	r		s	x	y	z
2	1	4		1	$17 * 13$	$17^{*} 84$	$34^{*} 49$
3	1	4		1	$17 * 72$	$17^{*} 154$	$34^{*} 121$
4	2	5		1	$26^{*} 128$	$26^{*} 504$	$52^{*} 324$

Conclusion:

In this paper, we have presented integer solutions
to the surd equation with three unknowns given by $\sqrt{2 z}=\sqrt{x+i y}+\sqrt{x-i y}$. To conclude one may attempt to find integer solutions to other choices of surd equations .with unknowns three or more than three.

References:

1. L. E. Dickson, History of Theory of numbers, Vol.2, Chelsea publishing company, Newyork, 1952.
2. L. J. Mordel, Diophantine equations, Academic press, Newyork, 1969.
3. M.A. Gopalan, and S. Devibala, " A remarkable Transcendental equation", Antartica.J.Math.3(2), 209215, (2006).
4. M. A. Gopalan, V. Pandichelvi, " On transcendental equation $z=\sqrt[3]{x+\sqrt{B y}}+\sqrt[3]{x-\sqrt{B y}}$, , Antartica.J.Math,6(1), 55-58, (2009).
5. M. A. Gopalan and J. Kaliga Rani, " On the Transcendental equation $x+g \sqrt{x}+y+h \sqrt{y}=z+g \sqrt{z}$ ", International Journal of mathematical sciences, Vol.9, No.1-2, 177-182, Jan-Jun 2010.
6. M. A. Gopalan, Manju Somanath and N. Vanitha, " On Special Transcendental Equations", Reflections des ERA-JMS, Vol.7, Issue 2, 187-192,2012.
7. V. Pandichelvi," An Exclusive Transcendental equations $\sqrt[3]{\mathrm{x}^{2}+\mathrm{y}^{2}}+\sqrt[3]{\mathrm{z}^{2}+\mathrm{w}^{2}}=\left(\mathrm{k}^{2}+1\right) \mathrm{R}^{2}$ ", International Journal of Engineering Sciences and Research Technology, Vol.2, No.2,939-944,2013.
8. M.A. Gopalan, S. Vidhyalakshmi and S. Mallika, " On The Transcendental equation $\sqrt[3]{\mathrm{x}^{2}+\mathrm{y}^{2}}+\sqrt[3]{\mathrm{z}^{2}+\mathrm{w}^{2}}=2\left(\mathrm{k}^{2}+\mathrm{s}^{2}\right) \mathrm{R}^{5}$ ", IJMER, Vol.3(3), 1501-1503, 2013.
9. M.A. Gopalan, S. Vidhyalakshmi and A. Kavitha, "Observation on $\sqrt[2]{y^{2}+2 x^{2}}+2 \sqrt[3]{x^{2}+y^{2}}=\left(k^{2}+3\right)^{n} z^{2}$ ", International Journal of Pure and Applied Mathematical Sciences, Vol 6, No 4, pp. 305-311, 2013.
10. M.A. Gopalan, S. Vidhyalakshmi and G. Sumathi, "On the Transcendental equation with five unknowns $3 \sqrt[3]{\mathrm{x}^{2}+\mathrm{y}^{2}}-2 \sqrt[4]{\mathrm{x}^{2}+\mathrm{y}^{2}}=\left(\mathrm{r}^{2}+\mathrm{s}^{2}\right) \mathrm{z}^{6} "$, Global Journal of Mathematics and Mathematical Sciences, Vol.3, No.2, pp.63-66, 2013.
11. M.A. Gopalan, S. Vidhyalakshmi and G. Sumathi, "On the Transcendental equation with six unknowns $2 \sqrt[2]{x^{2}+y^{2}}-x y-\sqrt[3]{x^{2}+y^{2}}=\sqrt[2]{z^{2}+2 w^{2}} \quad$ ", Cayley Journal of Mathematics, 2(2), 119-130,2013.
12. M.A. Gopalan, S. Vidhyalakshmi and S. Mallika, "An interesting Transcendental equation $6 \sqrt[2]{y^{2}+3 x^{2}}-2 \sqrt[3]{z^{2}+w^{2}}=R^{2 \prime \prime}$, Cayley J.Math, Vol. 2(2), 157-162, 2013.
13. M.A. Gopalan, S. Vidh2yalakshmi and K. Lakshmi, "On the Transcendental equation with five unknowns $\sqrt[2]{\mathrm{x}^{2}+2 \mathrm{y}^{2}}+\sqrt[3]{\mathrm{w}^{2}+\mathrm{p}^{2}}=5 \mathrm{z}^{2}$ ", Cayley J.Math, Vol. 2(2), 139-150, 2013.
14. M.A. Gopalan, S. Vidhyalakshmi T.R. Usha Rani, "Observation On the Transcendental equation $5 \sqrt[2]{\mathrm{y}^{2}+2 \mathrm{x}^{2}}-\sqrt[3]{\mathrm{x}^{2}+\mathrm{y}^{2}}=\left(\mathrm{k}^{2}+1\right) \mathrm{z}^{2}$ ", IOSR Journal of Mathematics, Volume 7, Issue 5 (Jul-Aug. 2013), pp 62-67.
15. M.A. Gopalan, G. Sumathi and S. Vidhyalakshmi," On The Surd Transcendental Equation With Five Unknowns $\sqrt[4]{\mathrm{x}^{2}+\mathrm{y}^{2}}+\sqrt[2]{\mathrm{z}^{2}+\mathrm{w}^{2}}=\left(\mathrm{k}^{2}+1\right)^{2 \mathrm{n}} \mathrm{R}^{5}$ ", IOSR Journal of Mathematics, Volume 7, Issue 4 (Jul-Aug. 2013), pp 78-81.
16. M.A. Gopalan, S. Vidhyalakshmi and A. Kavitha, "On Special Transcendental equation $\sqrt[3]{x^{2}+y^{2}}=\left(\alpha^{2}+\beta^{2}\right)^{s} z^{2} "$, International Journal of Applied Mathematical Sciences, Volume 6, Issue 2 (2013), pp. 135-139.
17. K. Meena, M.A. Gopalan, J. Srilekha, " On The Transcendental Equation With Three Unknowns $2(x+y)-3 \sqrt{x y}=\left(k^{2}+7 s^{2}\right) z^{2} \quad$ ", International Journal of Engineering Sciences and Research Technology, 8(1): January, 2019.
18. S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan, " On The Transcendental Equation $\sqrt[3]{x^{2}+y^{2}}+\sqrt[2]{m x+n y}=10 z^{3}$ ", International Journal of Recent Engineering Research and Development (IJRERD), Volume 05 - Issue 06, June 2020, pp. 08-11.
